mvpaircomp.Rd
Performs pairwise comparisons of multivariate mean vectors of factor levels, overall or nested.
The tests are run in the same spirt of summary.manova()
, based on multivariate statistics such as Pillai's trace
and Wilks' lambda, which can be applied to test multivariate contrasts.
mvpaircomp(model, factor1, nesting.factor = NULL, test = "Pillai", adjust = "none", SSPerror = NULL, DFerror = NULL) # S3 method for mvpaircomp print(x, ...)
model | a multivariate analysis of variance (MANOVA) model, fitted using |
---|---|
factor1 | a character string indicating a factor declared in the |
nesting.factor | optional; a character string indicating a factor also declared in |
test | a character string indicating the type of multivariate statistics to be calculated to perform the
F-test approximation. Default is |
adjust | a character string indicating the p-value adjustment method for multiple comparisons. Default is |
SSPerror | optional; a numeric matrix representing the residual sum of squares and cross-products, to be used to compute the multivariate statistics. |
DFerror | optional; a numeric value representing the residual degrees of freedom, to be used to compute the multivariate statistics. |
x | an object of class |
... | further arguments. |
An object of class mvpaircomp
, a list of
an array containing the summary of the multivariate tests.
an array containing p-dimensional square matrices of sum of squares and cross-products of the contrasts.
a character string indicating the p-value adjustment method used.
a character string indicating the factor being tested.
a character string indicating the nesting factor.
Krzanowski, W. J. (1988) Principles of Multivariate Analysis. A User's Perspective. Oxford.
Anderson Rodrigo da Silva <anderson.agro@hotmail.com>
# Example 1 data(maize) M <- lm(cbind(NKPR, ED, CD, PH) ~ family + env, data = maize) anova(M) # MANOVA table#> Analysis of Variance Table #> #> Df Pillai approx F num Df den Df Pr(>F) #> (Intercept) 1 0.99948 4303.1 4 9 9.375e-15 *** #> family 4 2.26992 3.9 16 48 0.0001151 *** #> env 3 1.69631 3.6 12 33 0.0018017 ** #> Residuals 12 #> --- #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1mvpaircomp(M, factor1 = "family", adjust = "bonferroni")#> #> Multivariate Pairwise Comparisons #> #> Pillai approx F num DF den DF Pr(>F) #> 1 - 2 0.83217 11.1564 4 9 0.0154218 * #> 1 - 3 0.88819 17.8743 4 9 0.0026108 ** #> 1 - 4 0.56683 2.9442 4 9 0.8227952 #> 1 - 5 0.43243 1.7142 4 9 1.0000000 #> 2 - 3 0.81643 10.0070 4 9 0.0227391 * #> 2 - 4 0.78310 8.1233 4 9 0.0466348 * #> 2 - 5 0.86794 14.7877 4 9 0.0054222 ** #> 3 - 4 0.86242 14.1036 4 9 0.0064871 ** #> 3 - 5 0.91546 24.3634 4 9 0.0007605 *** #> 4 - 5 0.47649 2.0479 4 9 1.0000000 #> --- #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 #> With bonferroni p-value adjustment for multiple comparisons# Example 2 (with nesting factor) # Data on producing plastic film from Krzanowski (1998, p. 381) tear <- c(6.5, 6.2, 5.8, 6.5, 6.5, 6.9, 7.2, 6.9, 6.1, 6.3, 6.7, 6.6, 7.2, 7.1, 6.8, 7.1, 7.0, 7.2, 7.5, 7.6) gloss <- c(9.5, 9.9, 9.6, 9.6, 9.2, 9.1, 10.0, 9.9, 9.5, 9.4, 9.1, 9.3, 8.3, 8.4, 8.5, 9.2, 8.8, 9.7, 10.1, 9.2) opacity <- c(4.4, 6.4, 3.0, 4.1, 0.8, 5.7, 2.0, 3.9, 1.9, 5.7, 2.8, 4.1, 3.8, 1.6, 3.4, 8.4, 5.2, 6.9, 2.7, 1.9) Y <- cbind(tear, gloss, opacity) rate <- gl(2, 10, labels = c("Low", "High")) additive <- gl(2, 5, length = 20, labels = c("Low", "High")) fit <- manova(Y ~ rate * additive) summary(fit, test = "Wilks") # MANOVA table#> Df Wilks approx F num Df den Df Pr(>F) #> rate 1 0.38186 7.5543 3 14 0.003034 ** #> additive 1 0.52303 4.2556 3 14 0.024745 * #> rate:additive 1 0.77711 1.3385 3 14 0.301782 #> Residuals 16 #> --- #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1mvpaircomp(fit, factor1 = "rate", nesting.factor = "additive", test = "Wilks")#> #> Multivariate Pairwise Comparisons #> #> --- #> Comparing levels of rate nested in additive #> #> $Low #> Wilks approx F num DF den DF Pr(>F) #> Low - High 0.46273 5.4184 3 14 0.011 * #> --- #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 #> #> $High #> Wilks approx F num DF den DF Pr(>F) #> Low - High 0.57322 3.4744 3 14 0.04503 * #> --- #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 #> #> With none p-value adjustment for multiple comparisonsmvpaircomp(fit, factor1 = "additive", nesting.factor = "rate", test = "Wilks")#> #> Multivariate Pairwise Comparisons #> #> --- #> Comparing levels of additive nested in rate #> #> $Low #> Wilks approx F num DF den DF Pr(>F) #> Low - High 0.81338 1.0707 3 14 0.3931 #> #> $High #> Wilks approx F num DF den DF Pr(>F) #> Low - High 0.50779 4.5234 3 14 0.02037 * #> --- #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 #> #> With none p-value adjustment for multiple comparisons# End (not run)