R/affineCoords.R
affineCoords.Rd
Affine transformations are of type \(f(x) = Ax + b\), where \(x\) is the spatial coordinates (2D in this case), \(A\) is a rotation matrix (it can also include scale/shear parameters, but only rotation is considered here), and \(b\) is the translation (xy shift) parameters.
affineCoords(s, angle = 0, xy_shift = c(0, 0))
s | A spatial object where |
---|---|
angle | A numeric value of the angle (in degrees, 0-360) to rotate
|
xy_shift | A numeric vector of length two with the x and y shift (the translation parameters). |
A two-column matrix with the transformed coordinates (xy).
p <- system.file('exdata', 'soybean.tif', package = 'hyperbrick') im <- brick(p) print(im) #> class : RasterBrick #> dimensions : 264, 364, 96096, 3 (nrow, ncol, ncell, nlayers) #> resolution : 1, 1 (x, y) #> extent : 16, 380, 16, 280 (xmin, xmax, ymin, ymax) #> crs : NA #> source : soybean.tif #> names : soybean.1, soybean.2, soybean.3 #> min values : 45.41772, 12.00000, 0.00000 #> max values : 236.4372, 239.0000, 218.0000 #> # view band-3 plot(im[[3]], col = gray.colors(20), asp = 0) # draw a spatial polygon on image pol <- Polygon(extent(c(40, 85, 50, 150))) lines(pol)# rotate and shift the spatial polygon new_pol <- affineCoords(pol, angle = -3, xy_shift = c(-11, 0)) plot(im[[3]], col = gray.colors(20), asp = 0) lines(new_pol)
# do some analysis within it, like: new_pols <- SpatialPolygons(list(Polygons(list(Polygon(new_pol)), "id0"))) plot(mask(im[[3]], new_pols))
mean(extract(im[[3]], new_pols)[[1]]) #> [1] 84.34281