mantelTest.Rd
Mantel's permutation test based on Pearson's correlation coefficient to evaluate the association between two distance square matrices.
mantelTest(m1, m2, nperm = 999, alternative = "greater", graph = TRUE, main = "Mantel's test", xlab = "Correlation", ...)
m1 | an object of class "matrix" or "dist", containing distances among n individuals. |
---|---|
m2 | an object of class "matrix" or "dist", containing distances among n individuals. |
nperm | the number of matrix permutations. |
alternative | a character specifying the alternative hypothesis. It must be one of "greater" (default), "two.sided" or "less". |
graph | logical; if TRUE (default), the empirical distribution is plotted. |
main | opitional; a character describing the title of the graphic. |
xlab | opitional; a character describing the x-axis label. |
... | further graphical arguments. See |
A list of
numeric; the observed Pearson's correlation between m1
and m2
.
numeric; the empirical p-value of the permutation test.
character; the alternative hypothesis used to compute p.value
.
numeric vector containing randomized values of correlation, i.e., under the null hypothesis that the true correlation is equal to zero.
Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27:209--220.
Anderson Rodrigo da Silva <anderson.agro@hotmail.com>
#> 1 2 3 4 5 6 7 #> 2 3.340628 #> 3 4.077546 5.506977 #> 4 5.363563 1.998527 4.850491 #> 5 3.101330 5.045423 2.324152 8.089021 #> 6 1.238522 2.651805 4.679259 4.811098 4.688428 #> 7 3.623305 1.724090 7.135583 2.134167 8.605810 1.934920 #> 8 2.922838 1.690728 6.582117 1.663528 6.833739 3.374794 2.111143 #> 9 3.555213 1.788716 7.199125 1.423100 8.037689 4.189185 2.353159 #> 10 5.446132 1.208638 5.884702 0.795171 7.918028 4.029226 1.048315 #> 11 7.978329 2.567743 5.938755 2.178913 7.412238 6.105662 3.410709 #> 12 5.840065 1.294550 7.029946 0.694369 8.241306 5.737707 2.587998 #> 13 8.453048 2.406380 9.802441 3.373966 8.923391 8.698328 4.615716 #> 14 1.465736 4.031444 5.534711 7.206169 2.856060 3.086537 4.635934 #> 15 2.396303 2.164605 8.414811 3.583914 7.753116 2.968316 1.327477 #> 16 2.690305 7.437900 4.709341 9.946683 3.378140 5.786071 8.758748 #> 17 3.134917 4.103622 7.657465 3.619184 9.311149 3.947882 1.866983 #> 8 9 10 11 12 13 14 #> 2 #> 3 #> 4 #> 5 #> 6 #> 7 #> 8 #> 9 0.222560 #> 10 2.378080 2.396474 #> 11 4.203915 4.887162 1.142472 #> 12 1.166367 0.940243 1.019113 2.206098 #> 13 3.830709 3.863815 2.128390 2.317785 1.503503 #> 14 4.862576 5.862818 5.754145 7.306173 6.872372 6.610267 #> 15 1.693882 1.815781 2.678664 5.821163 2.968784 4.095387 2.594153 #> 16 8.813287 9.189764 9.518194 12.176680 10.766776 11.399043 1.953576 #> 17 3.241800 3.066397 3.199140 7.043761 4.326943 6.149939 3.599164 #> 15 16 #> 2 #> 3 #> 4 #> 5 #> 6 #> 7 #> 8 #> 9 #> 10 #> 11 #> 12 #> 13 #> 14 #> 15 #> 16 6.103552 #> 17 0.942114 5.441962#> #> Tocher's Clustering #> #> Call: tocher.dist(d = garlicdist) #> #> Cluster algorithm: original #> Number of objects: 17 #> Number of clusters: 6 #> Most contrasting clusters: cluster 3 and cluster 5, with #> average intercluster distance: 11.78786 #> #> $`cluster 1` #> [1] 8 9 12 4 10 2 7 15 #> #> $`cluster 2` #> [1] 1 6 14 #> #> $`cluster 3` #> [1] 11 13 #> #> $`cluster 4` #> [1] 3 5 #> #> $`cluster 5` #> [1] 16 #> #> $`cluster 6` #> [1] 17 #>#> 1 2 3 4 5 6 7 #> 2 4.333530 #> 3 4.156222 7.070493 #> 4 4.333530 1.745434 7.070493 #> 5 4.156222 7.070493 2.324152 7.070493 #> 6 1.930265 4.333530 4.156222 4.333530 4.156222 #> 7 4.333530 1.745434 7.070493 1.745434 7.070493 4.333530 #> 8 4.333530 1.745434 7.070493 1.745434 7.070493 4.333530 1.745434 #> 9 4.333530 1.745434 7.070493 1.745434 7.070493 4.333530 1.745434 #> 10 4.333530 1.745434 7.070493 1.745434 7.070493 4.333530 1.745434 #> 11 7.525301 3.264753 8.019206 3.264753 8.019206 7.525301 3.264753 #> 12 4.333530 1.745434 7.070493 1.745434 7.070493 4.333530 1.745434 #> 13 7.525301 3.264753 8.019206 3.264753 8.019206 7.525301 3.264753 #> 14 1.930265 4.333530 4.156222 4.333530 4.156222 1.930265 4.333530 #> 15 4.333530 1.745434 7.070493 1.745434 7.070493 4.333530 1.745434 #> 16 3.476651 8.816863 4.043741 8.816863 4.043741 3.476651 8.816863 #> 17 3.560654 3.045773 8.484307 3.045773 8.484307 3.560654 3.045773 #> 8 9 10 11 12 13 14 #> 2 #> 3 #> 4 #> 5 #> 6 #> 7 #> 8 #> 9 1.745434 #> 10 1.745434 1.745434 #> 11 3.264753 3.264753 3.264753 #> 12 1.745434 1.745434 1.745434 3.264753 #> 13 3.264753 3.264753 3.264753 2.317785 3.264753 #> 14 4.333530 4.333530 4.333530 7.525301 4.333530 7.525301 #> 15 1.745434 1.745434 1.745434 3.264753 1.745434 3.264753 4.333530 #> 16 8.816863 8.816863 8.816863 11.787861 8.816863 11.787861 3.476651 #> 17 3.045773 3.045773 3.045773 6.596850 3.045773 6.596850 3.560654 #> 15 16 #> 2 #> 3 #> 4 #> 5 #> 6 #> 7 #> 8 #> 9 #> 10 #> 11 #> 12 #> 13 #> 14 #> 15 #> 16 8.816863 #> 17 3.045773 5.441962#> #> Mantel's permutation test #> #> Correlation: 0.9086886 #> p-value: 0.001, based on 999 matrix permutations #> Alternative hypothesis: true correlation is greater than 0# End (Not run)