spatialpred.RdA heuristic method to perform spatial predictions. The method consists of a local interpolator with stochastic features. It allows to build effective detailed maps and to estimate the spatial dependence without any assumptions on the spatial process.
spatialpred(coords, data, grid)
| coords | a data frame or numeric matrix containing columns with geographic coordinates |
|---|---|
| data | a numeric vector of compatible dimension with |
| grid | a data frame or numeric matrix containing columns with geographic coordinates where |
A data.frame containing spatial predictions, standard errors, the radius and the number of observations used in each prediction over the grid.
If grid receives the same input as coords, spatialpred will calculate the Percenntual Absolute Mean Error (PAME) of predictions.
Da Silva, A.R., Silva, A.P.A., Tiago-Neto, L.J. (2020) A new local stochastic method for predicting data with spatial heterogeneity. ACTA SCIENTIARUM-AGRONOMY, 43:e49947.
Anderson Rodrigo da Silva <anderson.agro@hotmail.com>
Depending on the dimension of coords and/or grid, spatialpred() can be time demanding.
# data(moco) # p <- spatialpred(coords = moco[, 1:2], data = rnorm(206), grid = moco[, 1:2]) # note: using coords as grid to calculate PAME # head(p) # lattice::levelplot(pred ~ Lat*Lon, data = p) # End (not run)